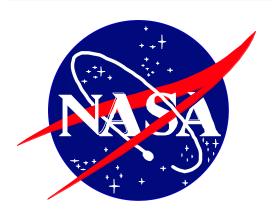
Aviation Safety & Security Review Weather Accident Prevention Turbulence Prediction & Warning Element

Aircraft Cabin Turbulence Warning Experiment - Part II

Rod Bogue

Aviation Safety Program Deputy Turbulence Element Manager National Aeronautics and Space Administration

AmericanAirlines*



Aircraft Cabin Turbulence Warning Experiment Part II

Rationale

- Turbulence is the leading cause of in-flight injuries
- A realistic warning time estimate is needed for radarbased turbulence warning technology being developed
- An aircraft turbulence warning experiment was conducted Oct. 1-3 2002 on a wide-body simulator
- A second turbulence warning experiment is being planned for March 2005 on a narrow-body simulator
- Review of first experiment to assure effective results from second experiment

Goal & Objectives

To determine the estimated time required to configure a commercial narrow-body aircraft cabin for safe transit of atmospheric turbulence

- 1. Provide an estimate of time required for secured seating of cabin occupants in a narrow-body aircraft configuration
- 2. Understand the variables affecting the cabin configuration process
- 3. Establish a benchmark for future reference & compare with wide-body results

Approach

- Conduct a narrow-body aircraft cabin turbulence warning experiment sequence of timed cabin preparation trials in a commercial aircraft setting
 - Utilize 747 Cabin Evacuation Facility at FAA/CAMI
 - Staff with cabin crews from major airlines
 - Employ passenger subjects funded by NASA
 - Obtain guidance from CAMI Cabin Evacuation Drill experience
- Use team of experienced airline operational staff to develop plans and procedures
- Explore options for rapid seating using "expedited" and baseline procedures

Approach (cont.)

- Focus on Realism by minimizing "compromises"
 - Realistic Setting
 - Realistic "Atmosphere"
- Emphasize learning about process
 - Explore options for rapid seating & belting
 - Identify variables influencing process
- Focus on Repeatability
 - Duplicate Instructions to Subjects across trials
 - Duplicate Announcements across trials
 - Duplicate Scenarios across attendant crews
- Avoid Crew Competition

CAMI 747 Aircraft Environment Research Facility

Methodology (Variables)

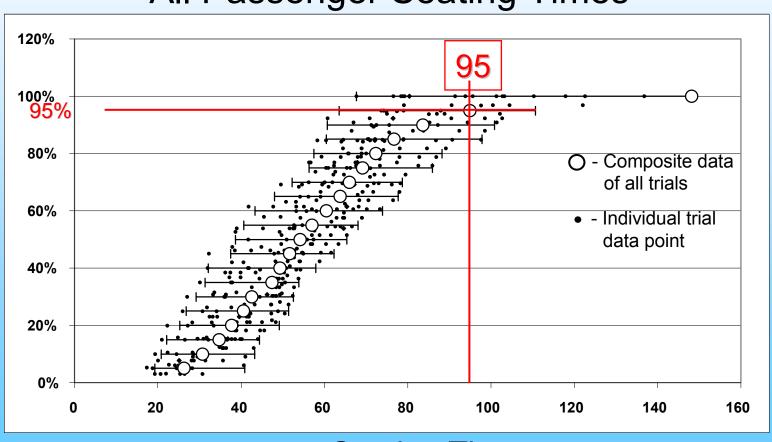
- Explore factors thought to influence seating time
 - Procedures
 - "Expedited" (immediate seating)
 - Baseline (preparation for landing)
 - 3 Scenarios (cover typical situations)
 - 3 Cabin Crews (cover crew variability)
 - Passenger & Flight Attendant pre-trial briefings stressing a zero false alarm rate
- Secured seating time variable used to assess factor effects (time for seating & belt buckling)

Experiment Variables

- Cabin readiness time (measured result)
- Cabin procedures (expected to influence result)
 - Expedited (immediate seating)
 - Baseline
- Trial Scenarios (cover typical situations)
 - Long Haul after movie
 - Snack-pack service
 - Food & beverage service
- Airline Cabin Crews (cover staffing variabilities)

Results from ACTWE I

Effects on Secured Seating Times


Subject Population	Scenario Effects	Procedure Effects	Cabin Crew Effects
Passengers	Minor Expected effects 79-99s.	Substantial Expedited 86s. Baseline 101s.	Minor Random effects 89-98s.
Cabin Crews	Major Expected effects 262- 606s.	Major Expedited 240s. Baseline 606s.	Major Expedited 75- 240 s.

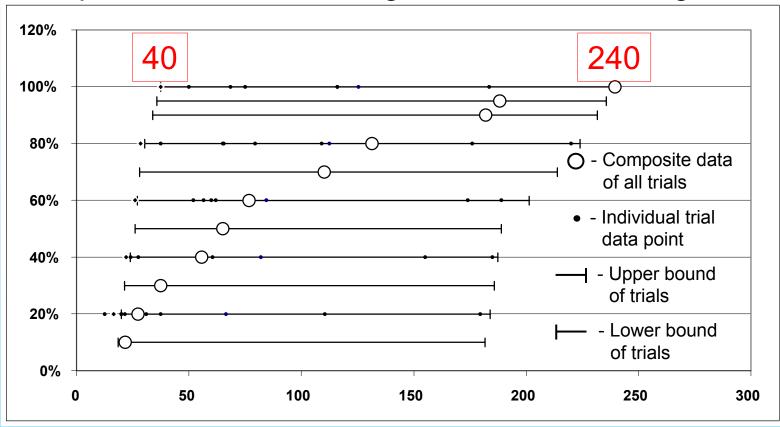
% Seated

Results from All Passengers

All Passenger Seating Times

Seating Time

All Passenger Data Observations


- When viewed as a group, 95% of passengers were securely seated in 95 seconds
- Passengers had consistent secured seating time performance
- Expedited procedure secured seating time was 15 seconds shorter than baseline procedure secured seating time
- Different scenarios had little effect on secured seating time
- Different crews had little effect on secured seating time

% Seated

Results from Expedited FA Trials

All Expedited Procedure Flight Attendant Seating Times

Seating Time

Observations from Expedited Flight Attendant Data

- When viewed as a group, 100% of flight attendants were seated in 240 seconds
- Trial secured seating times ranged from 40 seconds to 240 seconds to achieve 100% FA secured seating
- A factor of 8 separates the minimum and maximum times to reach 100% secured seating with professional flight attendants following established procedures for expedited seating

Methodology (Analysis & Scope of Results)

- Passenger seating times determined by video tape analysis
- Flight attendant seating times determined using switches on seat belts
- Data subjected to quality control procedures
- 18 trials over 3 days
- 393 Passenger data points
- 90 Flight attendant data points

Observations from all Flight Attendant Data

- When viewed as a group, 100% of flight attendants were seated in 240 seconds
- Trial secure seating times ranged from 40 seconds to 240 seconds to achieve 100% FA secure seating
- A factor of 8 separates the minimum and maximum times to reach 100% secure seating with professional flight attendants following established procedures for expedited seating

Concluding Remarks

- Passenger seating times
 - Probably one of the least controllable factors
 - Highly repeatable results
 - Seating times comparable to radar-based turbulence warning time flight experience
- Flight Attendant seating times
 - Under control of airline procedures
 - Substantial variation between crews
 - Could benefit from industry best practice analysis

Questions for ACTWE II

- Have the most important variables been identified? (Procedures & Scenarios)
- How important is the "statistical validity" of the results to the Aviation Community?
 - To achieve 30 trials (a common number used to assure validity) with each of 3 scenarios & 2 procedures would require ~10 times the resources (\$800k) used in ACTWE I

BACKUP CHARTS

Methodology (Trial Sequence)

- Configure cabin for selected Scenario
- Board passengers with carry-on accessories
- Establish initial cabin condition
 - Position passengers in assigned seats
 - Conduct safety briefing
 - Position passengers in initial positions
- Announce impending turbulence encounter
- Allow passengers to return to seats with guidance from cabin crew
- Terminate sequence 1 minute after last flight attendant reaches assigned seat

Methodology (Subjects)

- Flight Attendants
 - Line attendants with recent experience
 - Crews from 3 airlines
- Passengers
 - Conform to FAR 25 Appendix J
 - At least 40% female
 - At least 35% over 50 yrs
 - At least 15% female and over 50 yrs
 - Three life size anthropomorphic child dummies
 - Use same subjects for all trials

Assembling "box people"

Checking Cabin Configuration

Checking Cart Readiness

Boarding Passengers

Confirming cabin readiness

Lining up to board

